3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема и принцип работы зарядного устройства на тиристорах

Схема и принцип работы зарядного устройства на тиристорах

Зарядное устройство на тиристорах для аккумулятора обладает рядом преимуществ. Такая схема позволяет безопасно зарядить любую автомобильную батарею на 12 В, без риска закипания.

Дополнительно приборы данного типа подходят для восстановления свинцово-кислотных батарей. Достигается это за счет контроля параметров зарядки, а значит возможности имитировать восстановительные режимы.

    • 1.1 Узнай время зарядки своего аккумулятора

    Разновидности токовых стабилизаторов

    Светодиод загорается при достижении порогового значения тока. Для маломощных устройств этот показатель равняется 20 мА, для сверхъярких – от 350 мА. Разброс порогового напряжения объясняет наличие различных видов стабилизаторов.

    Резисторные стабилизаторы

    Для регулируемого стабилизатора параметров тока для маломощных светодиодов применяется схема КРЕН. Она предусматривает наличие элементов КР142ЕН12 либо LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и напряжении на входе 40 В. В условиях нормального теплового режима резисторы рассеивают мощность до 10 т. Собственное энергопотребление составляет около 8 мА.

    Узел LM317 удерживает на главном резисторе постоянную величину напряжения, регулируемую подстроечным элементом. Основной, или токораздающий элемент может стабилизировать ток, пропущенный через него. По этой причине стабилизаторы на КРЕН применяются для зарядки аккумуляторов.

    Величина в 8 мА не изменяется даже при колебаниях тока и напряжения на входе.

    Транзисторные устройства

    Регулятор на транзисторах предусматривает использование одного или двух элементов. Несмотря на простоту схемы при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе повышается напряжение резистора до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина тока, проходящие через него, понижается.

    Второй транзистор должен быть биполярным.

    Для реализации схемы с заменой стабилитронов на диоды применяются:

    • диоды VD1 и VD2;
    • резистор R1;
    • резистор R2.

    Подача тока через светодиодный элемент задается резистором R2. Для выхода на линейный участок ВАХ-диодов с привязкой к току базового транзистора используется резистор R1. Чтобы транзистор сохранял устойчивость, напряжение питания не должно быть меньше суммарного напряжения диодов + 2-2,5 В.

    Для получения тока 30 мА через 3 последовательно подключенных диода с напряжением 3,1 В по прямой производится запитка 12 В. Резисторное сопротивление должно равняться 20 Ом при мощности рассеивания 18 мВт.

    Схема нормализует режим работы элементов, снижает токовые пульсации.

    Схема с советскими транзисторами. Допустимое напряжение советских КТ940 или КТ969 – до 300 В, что подходит, если источник света – мощный SMD-элемент. Параметры тока задаются резистором. Напряжение стабилитрона составляет при этом 5,1 В, а мощность – 0,5 В.

    Минус схемы – падение напряжения при повышении силы тока. Его можно устранить, заменив биполярный транзистор на MOSFET с низкими параметрами сопротивления. Мощный диод заменяется элементом IRF7210 на 12 А или IRLML6402 на 3,7 А.

    Стабилизаторы тока на полевике

    Полевой элемент отличается закороченным истоком и затвором, а также встроенным каналом. При использовании полевика (IRLZ 24) с 3-мя выводами на вход подается напряжение 50 В, на выходе получается 15,7 В.

    Для подачи напряжения задействуется потенциал заземления. Параметры тока на выходе зависят от начального тока стока, и не привязываются к истоку.

    Линейные устройства

    Стабилизатор, или делитель постоянного показателя тока принимает нестабильное напряжение. На выходе линейный прибор его выравнивает. Он функционирует по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.

    К преимуществам эксплуатации относятся минимальное число деталей, отсутствие помех. Недостатком является малый КПД при разнице питания на входе и выходе.

    Феррорезонансное устройство

    Стабилизатор для переменного тока устаревшей модели, схема которого представлена конденсатором и двумя катушками – с ненасыщенным и насыщенным сердечником. К насыщенному (индуктивному) сердечнику подается напряжение постоянного типа, не зависимое от параметров тока. Это облегчает подбор данных для второй катушки и емкостный диапазон стабилизации питания.

    Устройство работает по принципу качелей, которые сразу сложно остановить или раскачать сильнее. Подача напряжения происходит по инерции, поэтому возможны падения нагрузки или разрыв цепи питания.

    Особенности схемы токового зеркала

    Токовое зеркало, или отражатель выстраивается на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный кристалл полупроводника.

    Схема токового зеркала по уравнению Эберса-Молла. Принцип работы заключается в том, что транзисторные базы объединяются, а эмиттеры подкидываются на одну шину питания. В итоге параметры переходного напряжения сцепки «база – транзистор-эмиттер» равны.

    Преимущества схемы заключаются в равном диапазоне устойчивости и отсутствии падения напряжение на резисторе-эмиттере. Параметры легче задаются при помощи тока. Недостаток заключается в эффекте Эрли – привязке напряжения на выходе к коллекторному и его колебания.

    Схема токового зеркала Уилсона. Токовое зеркало может стабилизировать постоянную величину выходного тока и реализуется так:

    1. Транзисторы № 1 и № 1 включены по принципу стандартного токового зеркала.
    2. Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенный параметр падения диодного напряжения.
    3. Оно будет меньше, чем напряжение питания, что подавляет эффект Эрли.
    4. Коллектор транзистора № 1 задействуется для установления режима схемы.
    5. Ток на выходе зависит от транзистора № 2.
    6. Транзистор № 3 трансформирует выходной ток в нагрузку с переменным напряжением.

    Транзистор № 3 можно не согласовывать с остальными.

    Стабилизатор компенсационного напряжения

    Выпрямитель работает по принципу обратной связи цепи для напряжения. Полное или частичное напряжение приравнивает к опоре. В результате стабилизатор генерирует параметры напряжения ошибки, устраняя колебания яркости для светодиодов. Прибор состоит из следующих элементов:

    • Регулирующий элемент или транзистор, который совместно с сопротивлением нагрузки образует делитель напряжения. Эмиттерный показатель транзистора должен превышать ток нагрузки в 1,2 раза.
    • Усилитель – управляет РЭ, выполняется на базе транзистора №2. Маломощный элемент согласуется с мощным по составному принципу.
    • Источник напряжения опоры – в схеме задействуется стабилизатор параметрического типа. Он выравнивает напряжение стабилитрона и резистора.
    • Дополнительные источники.
    • Конденсаторы – для сглаживания пульсаций, устранения паразитного возбуждения.

    Стабилизаторы компенсационного напряжения работают по принципу увеличения входного напряжения с дальнейшим возрастанием токов. Закрытие первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После подачи нагрузки оно выравнивается до номинала.

    Устройства на микросхемах

    Для стабилизующих приборов применяется микросхема 142ЕН5 или LМ317. Она позволяет выровнять напряжение, принимая по цепи обратной связи сигнал от датчика, подключенного к сети тока нагрузки.

    В качестве датчика задействует сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления по нагрузке. Схему задействуют для зарядных устройств, по ней же проектируется ЛЕД-лампа.

    Импульсные стабилизаторы

    Импульсный прибор отличается высоким КПД и при минимальных параметрах входного напряжения создают высокое напряжение потребителей. Для сборки используется микросхема МАХ 771.

    Регулировать силу тока будут один или два преобразователя. Делитель выпрямительного типа выравнивает магнитное поле, понижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент передает сигнал транзисторам. Стабилизация на выходе осуществляется посредством вторичной обмотки.

    2. Конструкция и детали

    Зарядно-разрядное устройство смонтировано на печатной плате из одностороннего фольгированного стеклотекстолита размером 60×45 мм и помещено в пластмассовый корпус. В виду простоты схемы устройство можно собрать на макетной плате или же вообще навесным монтажом.

    Печатная плата разработана для двух каналов и ее рисунок предоставлен. Маркировка элементов показана только для одного канала, так как второй канал идентичен.

    Рисунок печатной платы зарядного устройства

    На следующем рисунке показано расположение деталей на плате, а также их маркировка согласно принципиальной схеме.

    Расположение деталей на плате зарядного устройства

    Батарейные отсеки, светодиоды и лампы накаливания, а также переключатели и кнопочные выключатели размещены на внешней части корпуса. Батарейные отсеки сначала приклеиваются к корпусу клеем, а затем дополнительно крепятся винтами. Винты используются с головкой впотай.

    Батарейный отсек

    Крепление отсеков на корпусе устройства

    Монтаж батарейных отсеков и переключателей выполнен навесным монтажом непосредственно внутри корпуса. Кнопочные выключатели расположены в задней части корпуса и гибким проводом соединены с печатной платой.

    Нумерация элементов, расположенных на корпусе зарядного устройства

    Нумерация элементов задней части устройства

    В устройстве применены резисторы мощностью 0,125 Вт. Резистор R2 подстроечный многооборотный любого типа. Вместо транзисторов КТ315Б (VT1, VT2) и КТ814Б (VT3) можно использовать любые с подобными параметрами. Транзисторы КТ814 снабжены теплоотводами.

    Транзистор КТ502 (VT4) заменим на любой кремниевый с максимальным током коллектора не менее 150 mA. Транзистор КТ3102Г (VT5) выбран с повышенным коэффициентом по току и заменим на любой с похожими параметрами.

    С блоком питания устройство соединяется обычным USB кабелем. Разъем, который используется для соединения с телефоном, отрезается, а жилки красного и черного цвета используются для подачи питания. Красная жилка – плюс, а черная — минус.

    Виды электрических схем ЗУ

    Сделать зарядное устройство для шуруповерта можно самостоятельно. Для этого понадобится схема, набор электронных компонентов, паяльник с расходными материалами и определенные навыки и квалификация.

    Перед выбором схемы надо учесть несколько моментов:

    • импульсное зарядное устройство легче, компактнее, у него выше КПД, но оно сложнее в сборке и наладке;
    • если режим зарядки и контроль ее завершения будет поддерживаться автоматически, то для NiCd, NiMH и Li-ion аккумуляторов алгоритм будет различаться – для первых двух типов зарядка производится стабилизированным током, литий-ионный заряжается по двухступенчатой (в некоторых случаях – трехступенчатой) схеме.

    Номинальный ток ЗУ определяется мощностью элементов силовой цепи (трансформаторов, диодов, транзисторов), и их надо подбирать в соответствии с необходимостью.

    На 12 вольт

    Схема простого зарядного устройства на 12 вольт, в котором параметры зарядки надо поддерживать вручную, не требует высокой квалификации для сборки и не нуждается в наладке.

    Ток устанавливается потенциометром, параметры контролируются по амперметру и вольтметру. Трансформатор можно подобрать готовый, с напряжением на вторичной обмотке 12-15 вольт – например, ТПП-48 или ТПП-201-208. Параметры других элементов, от которых не зависит максимальный ток, указаны на схеме. Остальные выбираются в зависимости от потребного выходного тока.

    ЭлементТребуемый токТип
    VD1-VD4До 1 А1N4001 (1N400X)
    1А и выше1N5400 (1N540X)
    VT1До 1 АКТ815
    1А и вышеКТ829

    По мере снижения зарядного тока его надо подстраивать до выбранного значения. Если производится зарядка током до 0,2С, процесс может занять до 16 часов, поэтому ручное поддержание параметров крайне неудобно.

    Зарядные устройства с автоматическим поддержанием параметров и алгоритмами, соответствующими типу аккумулятора, часто строят на микроконтроллерах. Схемы и прошивки можно найти в сети.

    Также зарядные устройства строят на специализированных микросхемах. В качестве примера приведена схема зарядного устройства на MAX713 для никель-кадмиевых аккумуляторов. Очевидно, что схема достаточно сложна, но она универсальна (для различных напряжений), имеет режим тренировочного цикла и обеспечивает оптимальный режим зарядки, а также своевременное ее завершение. Это приводит к увеличению срока службы батарей.

    На 18 вольт

    Принципиально схемы зарядных устройств для шуруповертов на 18 вольт не отличаются от 12-вольтовых. В большинстве случаев они приводятся к нужному номиналу настройкой параметров или (как в приведенной выше импульсной схеме) переустановкой перемычек. В схеме простого зарядного устройства достаточно применить трансформатор с большим выходным напряжением. Так, ТПП-209 имеет обмотку с напряжением 20 вольт. При его использовании можно заряжать 18-вольтовые аккумуляторы.

    Схема пуско-зарядного на 24В

    ЗАРЯДНОЕ УСТРОЙСТВО НА 24В

    Схема — обычный фазоимпульсный регулятор, часто используемый в сварочных аппаратах . На основе этой конструкции, найденной на форуме монитор.еспек, и была собрана зарядка для мощного аккумулятора 24 вольта. Моточные данные импульсного трансформатора Т2 — на схеме.

    Трансформатор в ЗАРЯДНОЕ УСТРОЙСТВО НА 24

    Зарядной веткой (Iзар.) подзаряжаем АКБ, а пусковой (Uпуск.) делаем запуск. Только нужно поставить вольтметр на зарядной ветке после амперметра и при пусковом режиме вешая клеммы на аккумулятор доводить регулятором до значения по вольтметру не более 16 в и запускать авто, далее выводим регулятор на минимум (при удачном запуске) и отсоединяем клеммы.

    шунт 20А

    Итак, ЗУ полностью собрал. Регулировка без нагрузки не работает и это похоже относится ко многим схемам. Для настройки надо чтобы хоть лампочка была подключена.

    ЗАРЯДНОЕ УСТРОЙСТВО НА 24В своими руками

    ЗАРЯДНОЕ УСТРОЙСТВО НА 24В 220

    Для амперметра предел измерения 20 А, хотя реально зарядка может выдать намного больше. В качестве нагрузки использовал 10 амперный шунт. Для измерения использовал ту-же стрелочную головку с 20 А шунтом и подрисовал шкалу.

    Схемы балансиров для литиевых аккумуляторов

    В чем заключается балансировка при сборке батареи последовательно? Когда соединение банок идет противоположными полюсами, напряжение суммируется. Ток протекает одинаковый. По разным причинам разница в емкости может немного отличаться. Но если не поставить преграду, самая малая банка переполнится, то есть перезарядится. Это плохо. При работе ток отбирается в равных количествах. Банка, у которой емкость немного ниже, разрядится настолько, что может выйти из строя, пока другие элементы сборки отдают энергию до нормы.

    балансировочный-шлейф распайка

    балансировочный-шлейф-2 для комбинированного соединения

    Балансир представляет схему, которая создает препятствия для прохождения тока в заряженную батарею, направляя ее через дополнительные сопротивления, резисторы. Балансир включает стабилитрон TL431A и транзистор односторонней прямой проводимости BDI 40

    зарядное и балансир IMAX6

    Отличные балансиры включены в схему зарядных устройств для литиевых аккумуляторов, которыми широко пользуются. Их маркировка Turnigy Accucel-6 50W 6A и iMAX B6.

    Перед вами простая и понятная схема балансировки литиевых аккумуляторов, которую можно сделать самостоятельно.

    balansir-shema

    Тестирование зарядного устройства

    Плата Arduino и ЖК дисплей не являются обязательными элементами для нашей схемы – они используются только для целей контроля, поэтому вы можете временно смонтировать их на схеме с помощью специальных колодок, чтобы потом можно было легко их убрать и использовать в других проектах.

    Для тестирования устройства удалите с нее плату Arduino и подсоедините схему к трансформатору. После этого отрегулируйте выходное напряжение к требуемому уровню с помощью потенциометра RV2. Проверьте выходное напряжение схемы с помощью мультиметра и подсоедините ее к батарее как показано на следующем рисунке. Теперь наше устройство готово к работе.

    Тестирование нашего зарядного устройства

    Прежде чем подсоединять плату Arduino к нашей схеме удостоверьтесь что на контакте, к которому мы будем ее подсоединять, напряжение не превышает 5 В, иначе мы можем испортить плату Arduino. Используйте ниже приведенный текст программы для загрузки его в плату Arduino. Эта программа предназначена для отображения значений тока и напряжения на экране ЖК дисплея. Более подробно весь этот процесс показан в видео в конце статьи.

    Данное устройство можно использовать и для заряда сотовых телефонов, но для этого необходимо будет уточнить какие значения напряжения и тока требуются для заряда вашего сотового телефона. Также к схеме необходимо будет подсоединить USB кабель.

    голоса
    Рейтинг статьи
    Читайте так же:
    Прибор для регулировки форсунок гбо
Ссылка на основную публикацию
Adblock
detector