Как изготовить стробоскоп для зажигания своими руками
Стробоскопом называют прибор для наблюдения объектов, совершающих быстрые периодически повторяющиеся движения. Для этого он освещает движущийся объект яркими вспышками света, повторяющимися с частотой равной частоте движения этого объекта. При таком освещении движущийся объект кажется неподвижным. В двигателе авто с помощью стробоскопа можно определить величину угла опережения зажигания. Для этого нужно синхронизировать вспышки импульсами зажигания в первом цилиндре, а свет направлять на метки ВМТ и установки момента опережения зажигания, освещая и шкив коленвала с риской.
Стробоскопы заводского изготовления в качестве излучателя световых вспышек обычно имеют безынерционную импульсную лампу, позволяющую сделать настройки угла опережения зажигания даже в условиях яркого солнечного освещения. Однако она имеет небольшой срок службы и не всегда бывает в продаже. Поэтому с появлением светодиодов силой света более 2000 мкд при изготовлении стробоскопа своими руками стало удобнее пользоваться ими. Чтобы убедить в значительности превосходства параметров светового потока новых светодиодов, напомним, что у АЛ307 при том же потребляемом токе сила света составляет всего 10–16 мкд. (схема к видеоматерилам в описании под видео)
Материалы
Предлагаемая для изготовления своими руками схема стробоскопа проста и не требует сложной настройки. Чтобы сделать простой стробоскоп для корректировки момента опережения зажигания своими руками, понадобятся следующие инструменты, детали и материалы:
Конструкция устройства
Корпусом стробоскопа будет фонарик. Схема собирается навесным монтажом. Готовая схема заливается горячим пластиком из клеевого пистолета, и после отвердения заливки помещается в отсек для батареек фонарика. Питающий и сигнальный кабели выводятся наружу через просверленные в корпусе отверстия. К концам проводов питания нужно припаять зажимы, обозначив полярность. На вход стробоскопа подключить антенный кабель. К центральной жиле входного кабеля припаять зажим «крокодил». После подключения стробоскопа к мотору авто с его помощью на вход будут подаваться импульсы синхронизации высоковольтного провода зажигания. Чтобы это стало возможным, достаточно надеть его на изоляцию высоковольтного провода зажигания первого цилиндра двигателя авто. Импульс синхронизации пойдет через емкость, образуемую центральной жилой провода зажигания и зажимом. То есть простой самодельный емкостной датчик будет состоять из зажима «крокодил», надетого на высоковольтный провод.
Сделать световой излучатель удобнее всего, смонтировав группу светодиодов, вплотную друг к другу в центре диска из фольгированного текстолита. Устанавливать его следует так, чтобы светодиоды, пройдя в отверстие для лампочки в отражателе, оказались как можно ближе к точке расположения нити накаливания. Прикрепить текстолит к рефлектору можно при помощи клеевого пистолета.
Питание
Питание прибора происходит от бортовой электрической сети авто. Диод VD1 предохраняет устройство от случайного подключения питания обратной полярности. Импульс синхронизации с емкостного датчика через цепь C1, R2 подается на вход триггера DD1.1, включенного как ждущий мультивибратор. Импульс высокого уровня запускает ждущий мультивибратор, триггер при этом переключается, а конденсатор С3, заряженный в исходном состоянии, начинает перезаряжаться через резистор R3. Приблизительно через 15 мс этот конденсатор перезарядится настолько, что напряжение на входе R вновь сбросит триггер в исходное состояние.
Так ждущий мультивибратор реагирует на каждый положительный импульс с емкостного датчика, вырабатывая синхронно входному прямоугольный выходной импульс высокого уровня постоянной длительности (15 мс), которая определяется номиналами резистора R3 и конденсатора C3. Последовательность этих импульсов с неинвертирующего выхода триггера DD1.1 поступает на вход второго ждущего мультивибратора, собранного по аналогичной схеме на триггере DD1.2. Длительность импульсов второго узла достигает 1,5 мс и определяется параметрами резистора R4 и конденсатора C4. Выходное напряжение второго триггера открывает триоды VT1 – VT3, и через светодиоды проходят импульсы тока величиной от 0,7 до 0,8 А.
Некоторые тонкости
Несмотря на то что величина тока значительно больше допустимой для этих светодиодов (максимально допустимый прямой импульсный ток всего 100 мА), не следует опасаться перегрева и выхода их из строя. Потому что длительность импульсов невелика, а их скважность в нормальном режиме не меньше 15. Яркость же вспышек девяти светодиодов позволяет пользоваться прибором даже днем.
Редакция журнала «Радио» сообщает о том, что для того чтобы убедится в работоспособности устройства, было проведено его испытание.
Светодиоды с успехом перенесли импульсный ток величиной 1 А в течение часа, при этом не было обнаружено даже небольшого их перегрева. Обычно же время работы с прибором не превышает 5 мин, да и ток, проходящий через них в этой конструкции, несколько меньше.
Назначение ждущего мультивибратора на триггере DD1.1 – защита светодиодов от выхода из строя при увеличении частоты вращения коленвала. Обычно прибором работают при частоте вращения коленвала близкой к холостому ходу (от 800 до 1200 об/мин). Так как длительность вспышек величина постоянная, при увеличении частоты вращения коленвала будет уменьшаться скважность импульсов тока через светодиоды, и, как следствие этого, увеличится нагревание последних. Поэтому длительность импульсов ждущего мультивибратора на триггере DD1.1 выбрана такой, что при достижении частоты вращения коленвала 2 тыс. об-1 скважность его выходной последовательности импульсов приближалась к 1. При дальнейшем же возрастании частоты вращения, а с ней и входных импульсов, происходит прекращение синхронизации ими выходных импульсов, а узел начинает вырабатывать последовательность импульсов усредненной частоты, что гораздо менее опасно для светодиодов.
Настройка устройства
Опытным путем установлено, что длительность вспышек должна быть от 0,5 до 0,8 мс. При меньшей длительности вспышек во время установки угла опережения с помощью стробоскопа велико ощущение недостатка света. Если же длительность больше, то движущаяся метка как бы размазывается. Необходимую длительность легко подобрать своими руками не измеряя, а руководствуясь только зрительными ощущениями. Регулируется она с помощью подстроечного резистора R4. Больше схема ни в каких настройках не нуждается.
Использование прибора
Для установки угла (момента) опережения своими руками устройством освещают установочные метки, работающего на холостых оборотах двигателя авто. Одна из них находится на вращающихся деталях мотора авто (на шкиве коленвала или на маховике). Вторая метка – неподвижна, она находится или на крышке передней части блока цилиндров авто, или на корпусе коробки передач. Если в свете прибора подвижная метка кажется стоящей напротив неподвижной, зажигание авто в норме и не требует регулировки момента (угла) опережения.
В случае несовпадения меток для регулировки момента опережения нужно соответственно изменить положение трамблера. Для задержки момента зажигания нужно повернуть трамблер по ходу вращения бегунка, а чтобы сделать его раньше – в обратную сторону. Если же искрообразованием в вашем авто управляет микропроцессор, ищите неисправный датчик или доверьте решение этой проблемы профессионалам.
Как сделать стробоскоп своими руками
Вариантов исполнения «домашнего» стробоскопа может быть множество. Тем не менее, в целом все подобные проекты конструктивно схожи. Рассмотрим принцип сборки сего гаджета на следующем примере.
- транзистор КТ315 (найти его можно в любой радиоаппаратуре былой эпохи, может иметь различные буквенные индексы);
- тиристор КУ112А (легко отыскать в импульсном блоке питания древних телевизоров);
- малогабаритные резисторы мощностью 0,125 Вт;
- дешевый (китайский) фонарик на диодах (количество диодов может быть разным, но лучше — от 6 до 10 штук);
- конденсатор C1 под напряжение от 16 Вольт;
- диод V2 — любой низкочастотный, например КД105 или Д9;
- малогабаритное реле (индекс BS-115-12A-DC12V или RWH-SH-112D, на 12 Ампер, катушка — 12 Вольт); впрочем, использовать можно и отечественные реле, например типа РЭС-10, с напряжением катушки 12 Вольт;
- провода питания необходимой длины (около 0,5-0,6 м) и зажимы типа «крокодил» для подключения стробоскопа к аккумуляторной батарее;
- экранированный провод до 0,5 м, кусок медного провода около 10 см.
Конструкции самодельного стробоскопа для установки зажигания
Сейчас на рынке можно купить немало полезного для настройки и регулировки мотора, но принципиальных преимуществ красивые «игрушки» перед самоделками не имеют, стоят дороже и ломаются чаще. Значительно проще и дешевле изготовить схему стробоскопа для установки зажигания своими руками. Требуется совсем немного терпения, паяльник и с десяток деталей.
Стробоскоп для установки зажигания из двух транзисторов
Себестоимость подобной модели стробоскопа обойдется вам в пять сотен рублей, а используемая элементная база состоит из:
- пары КТ315 – самых распространенных советских транзисторов, которые легко отыскать в любой электронной игрушке;
- с десяток маломощных резисторов различного номинала, КУ112А;
- пару конденсаторов, один электролит на 47 мкФ, второй обычный, на 47 «пикушек»;
- диод серии КД
- с десяток светодиодов, лучше фонарных.
Также для подключения стробоскопа для зажигания своими руками понадобится медный провод, пара метров двужильного с зажимами.
Собираем конструкцию стробоскопа своими руками согласно раскладке схемы, можно даже навесным монтажом, но лучше на подготовленной плате. Особых премудростей в установке и подключении при налаживании УОЗ нет, поэтому при аккуратной пайке должно все заработать с первого толчка.
Можно провести проверку схемы. После подачи напряжения с аккумулятора замыкаем вывод с медным контактом для «броника» с плюсовой клеммой. Если релюха зажужжит – схема в порядке.
Подбором емкости электролита можно установить длительность горения светодиода, но лучше использовать рекомендованные номиналы. При слишком большой и яркой вспышке установить правильно угол не всегда удобно, потому как изображение меток слегка смазывается. Поэтому оптимальной будет емкость чуть менее рекомендованных 47 мкФ.
Подключение и установка стробоскопа-самоделки своими руками сводится к подаче питания от аккумулятора на контакты платы и закреплению медной жилы поверх высоковольтного «броневика» первой свечи. Не забудьте проверить полярность питания перед включением стробоскопа.
Схема проста и надежна, но насколько выдаваемые стробоскопом вспышки обладают точными временными характеристиками, зависит от многих факторов, в том числе от качества сборки и правильности установки схемы.
Вариант стробоскопа с улучшенными характеристиками
Если работа с радиодеталями не вызывает у вас раздражения и есть навык, можно попробовать изготовить и установить более сложный вариант стробоскопа. Схема использует сборку NE555, благодаря чему скважность импульса значительно лучше. Большинство аналогичных конструкций и схем используют КР1006ВИ1 с кучей дополнительной навески. В результате установка стробоскопа для зажигания получается дороже, хотя потенциально может использоваться для дополнительной настройки параметров регулятора. Если вам нужен надежный стробоскоп с точными и стабильными характеристиками – лучше использовать схему с NE555.
При более-менее точном соблюдении параметров деталей схема установки должна заработать сразу. Иногда требуется подстройка чувствительности схемы к разряду в бронепроводе. Для этого применяем переменное сопротивление №3.
Если есть задумка оформить схему стробоскопа в виде «фирменного» прибора с коробкой и фонарем, можно вместо медного отрезка проволоки, накручиваемого на высоковольтный «броник», дополнительно изготовить и установить медный зажим-прищепку с припаянным контактом.
В схеме стробоскопа выполнена установка светодиодов 5023VWC-M-15-cd в количестве 8 шт. Для ключа можно применить практически любой силовой биполярный транзистор.
Практика показала высокую эффективность подобных устройств, их живучесть и возможность установки даже при отсутствии навыков и квалификации. Купить равноценный экземпляр стробоскопа в любом случае будет дороже, и еще неизвестно, сколько он проработает.
На следующем видео наглядно показан один из вариантов изготовления стробоскопа своими руками:
Другие варианты
Очень простую плату управления можно выполнить на микросхеме К561ЛА7 (зарубежный аналог CD4011A). Эта микросхема очень распространена и стоит копейки. Изготовление латы доступно даже любителю, имеющему первичные навыки радиоконструирования. Частота мигания задается резистором и конденсатором. Чем больше емкость и сопротивление, тем реже мигают фонари. Приближенно вычислить частоту можно по формуле F=0,52/(R*C). Окончательно установить период мигания можно подбором параметров элементов времязадающей цепочки. Другой вариант – установить подстроечный резистор вместо постоянного и подобрать нужный режим его вращением. Вместо К561ЛА7 можно применить микросхему К176ЛА7, но она более чувствительна к напряжению питания. Также можно использовать любые микросхемы серии К176 и К561, содержащие элементы НЕ, И-НЕ, ИЛИ-НЕ.
При любой схеме надо предусмотреть установку выходного транзистора на теплоотводящий радиатор.
Схему можно немного усложнить, добавив несколько деталей и разделив цепи заряда и разряда конденсатора. Теперь длительность вспышки и паузы можно регулировать раздельно.
Также можно использовать широко распространенную микросхему NE555 (КР1006ВИ1). Она предназначена для построения подобных схем и имеет простое включение с минимумом дополнительных элементов.
Но самые лучшие световые эффекты можно получить с помощью микроконтроллера. Можно применить «малыша» Attiny13 или плату Arduino Nano, добавив к ним лишь ключ на мощном транзисторе (полевом или биполярном). Можно выбрать тип транзистора из таблицы или подобрать самостоятельно.
Наименование транзистора | Тип | Наибольший ток стока/коллектора, А |
---|---|---|
BUZ11A | Полевой (N) | 25 |
IRF540NPBF | Полевой (N) | 33 |
BUZ90AF | Полевой (N) | 4 |
2SA1837 | Биполярный (n-p-n) | 1 |
2SB856 | Биполярный (n-p-n) | 3 |
2SC4242 | Биполярный (n-p-n) | 7 |
Код на языках Arduino или С++ может написать сможет даже начинающий программист. Управление мигающим светодиодом в качестве упражнения предлагается на первых же занятиях по программированию микроконтроллеров. Немного овладев навыками, можно перейти к дальнейшему развитию программы. Можно, например, построить циклическое переключение частоты мигания тактовой кнопкой или смену световых эффектов. Все ограничивается фантазией разработчика программы.
На рисунке приведен пример схемы на Attiny13, но надо понимать, что подключение внешних элементов к ножкам микросхемы может быть другим – назначение выводов выбирается программно.
За счет подачи электрического тока конденсатор заряжается через резистор. После того как заряд достигнет определенного уровня, резистор начнет подавать ток на открывающий транзистор. В этот момент срабатывает реле. Это создает цепь из тиристора, диода и конденсатора. Эта система выполняет функции делителя, через него заряд попадает на управляющий контакт тиристора. Затем он открывается, конденсатор разряжает запасенную энергию на диоды. В итоге они вспыхивают. Через тиристор и резистор основной выход транзистора соединяют с главным проводом. Затем транзистор закрывается, а реле выключается.
При этом время свечения диодов становится больше, так как разрыв контакта с задержкой. Но в итоге контакт все же прерывается и тиристор обесточивается. Прибор переходит в спокойное положение до следующего импульса. Для большей яркости свечения светодиодов требуется использовать конденсатор с большей емкостью.
Преимущества и недостатки
К преимуществам всех стробоскопов, вне зависимости от сферы их применения, можно отнести:
- создание разнообразных световых эффектов;
Вариант стробоскопического эффекта
- возможность подключения музыкального сопровождения;
- создание необходимой атмосферы праздника и торжества;
- возможность регулировать яркость излучаемого светового потока.
Наибольшей популярностью на сегодняшний день пользуются именно светодиодные приборы. Это связано с достоинствами самих источников света, к которым относят:
- экономичность в вопросе потребления электроэнергии;
- создание качественного светового потока;
- различные цвета свечения диодов;
- длительный период службы;
- они обладают высокой устойчивостью к различным видам воздействий, особенно механического плана;
- полная безопасность и экологичность.
К недостаткам таких изделий, вне зависимости от источника света, можно отнести высокую стоимость, а также невозможность длительный период времени находиться в стробоскопическом эффекте, так как это приводит к переутомлению глаз.