0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диммер для светодиодных ламп на 220 вольт: особенности работы и подключения своими руками

Диммер для светодиодных ламп на 220 вольт: особенности работы и подключения своими руками

Современный диммер для светодиодных ламп имеет сложную электрическую схему, работа которой заключается в регулировке светового потока. Вдобавок он служит защитой от перенапряжения, исполняет роль распределителя нагрузки и экономит электрический ресурс, продлевая срок службы ламп.

Лампа и диммер

Что такое диммер для ламп

Название «диммер» произошло от английского слова «dim»— «затемнять». Устройство служит для изменения электрической мощности. С помощью такого переключателя можно менять яркость светового потока в большую или меньшую сторону.

Диммеры-светорегуляторы функционируют с помощью электронных схем на полупроводниковых приборах — симисторах или тиристорах. Изменение яркости света происходит после подачи напряжения на управляющие электроды.

  • Мягкое включение и выключение ламп.
  • Несколько режимов интенсивности освещения.
  • Продление срока службы ламп.
  • Возможность одновременно управлять группой светильников.

Отдельно стоит упомянуть светорегуляторы с таймером. Такие приборы дают возможность настроить автоматическое включение и выключение ламп. Свет будет загораться постепенно — никаких резких вспышек и навязчивого мерцания.

Еще одно полезное изобретение — выключатель с регулятором яркости для светодиодных ламп. Он имеет меньше опций, чем полноценный диммер, но тоже хорошо справляется с задачей по изменению интенсивности освещения.

Диммер для регулировки света

Светодиодные ленты

Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по

3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.

Читайте так же:
Порядок регулировки тепловых зазоров клапанов зил 130

Подключаем к Arduino

Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором: blank Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате. blank

Управление

Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.

Питание и мощность

Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:

  • Яркость. Максимальная мощность будет потребляться на максимальной яркости.
  • Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
  • Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
  • Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
  • Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.

Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.

    Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2

Читайте так же:
Регулировка тормозных сил спринтер

Важные моменты по току и подключению:

  • Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
  • Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
  • Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.

Коды проекта

Согласно нашим схемам мы приведем примеры различных вариантов для работы фоторезистора с Ардуино с некоторыми разъяснениями.

Вариант 1

В «void setup» мы инициализируем последовательный монитор:

Затем мы читаем аналоговое значение, поступающее от фоторезистора, и определяем его как value («значение»):

И мы записываем значение на последовательном мониторе:

Вариант 2

Чтобы убедиться, что все работает правильно, вы можете создать базовый эскиз, который считывает уровень напряжения и выводит значение в последовательный порт. Закрывая фоторезистор, вы увидите изменение показаний.

Чтобы создать эскиз вольтметра:

  1. Откройте Arduino IDE.
  2. Вставьте код ниже.
  3. Сохраните эскиз. В меню «Файл» выберите «Сохранить как» (англ. — Save as).
Читайте так же:
Регулировка зажигания на андории

Чтобы загрузить эскиз на свой Arduino и посмотреть результат нужно:

  1. Подключитеь Arduino к компьютеру с помощью USB-кабеля.
  2. В IDE на панели инструментов нажмите кнопку «Загрузить» (Upload).
  3. На панели инструментов нажмите кнопку «Последовательный монитор» (Serial Monitor).

Обнаружение изменений

Точные значения, выводимые на последовательном мониторе в скетче выше, будут различаться в зависимости от нескольких факторов:

  • Блок питания от Arduino. В частности, при питании от USB-кабеля обычно 5 В блока питания Arduino немного меньше этого идеала;
  • Минимальное и максимальное значения сопротивления используемого фоторезистора;
  • Точность резистора 10К;
  • Конструкция макета и используемых проводов — они имеют небольшие уровни сопротивления, которые могут повлиять на АЦП;
  • И количество окружающего света в комнате.

Гораздо важнее обнаруживать изменения уровня освещенности, чем иметь дело с реальными цифрами.

Эскиз ниже считывает уровень освещенности в процедуре настройки для использования в качестве базового измерения, а затем определяет, когда фоторезистор закрыт. Когда это происходит, при вызове digitalWrite() загорается встроенный светодиод Arduino на цифровом выводе 13.

Установка порогов

Приведенный выше эскиз устанавливает порог — значение, которое определяет, сколько изменений ожидается, прежде чем что-то произойдет — в коде. В зависимости от вашей среды и приложения может потребоваться отрегулировать этот порог. Чтобы избежать необходимости подключать Arduino обратно к компьютеру и перепрограммировать его, вы можете использовать потенциометр для регулировки величины сопротивления в цепи.

Вы можете подключить потенциометр разными способами, пример которого показан ниже:

Потенциометры — это другой тип переменного резистора — они обычно присоединяются к регулятору, а их сопротивление устанавливается поворотом ручки влево и вправо. На этой схеме триммер используется для изменения напряжения, подаваемого на фоторезистор. Это влияет на его способность обнаруживать свет и изменяет баланс потенциального делителя, так что количество изменений, зарегистрированных эскизом (base — v, в приведенном выше коде), может быть увеличено или уменьшено.

Читайте так же:
Мотоблок китай регулировку холостого хода

Для более цифрового подхода вы можете подключить потенциометр так же, как фоторезистор, и прочитать его, используя второй аналоговый вход. Затем вы можете использовать это измерение в эскизе, чтобы определить новое значение для переменного порога.

Два примера схем в уроке демонстрируют основные шаги, связанные с обнаружением изменений в уровнях освещенности с помощью фоторезистора и Arduino. Более интересные проекты, такие как системы домашней автоматизации и сигнализации, могут быть построены с использованием дополнительных компонентов, таких как реле, двигатели и устройства беспроводной связи.

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

Подключение внешнего потенциометра

Устройство подключают по схеме, указанной в инструкции по эксплуатации преобразователя.

Схема подключения потенциометра к преобразователю частоты

Центральные контакты регулируемого реостата подключаются к аналоговым входам преобразователя 10. +10 В или 0-20 мА или 4-20 мА. Другие выводы подключаются к источнику опорного напряжения, связанного с входами для аналогового сигнала.

При наличии источника, встроенного в преобразователь, резистор для задания угловой частоты ротора подключат к соответствующим входам.

Схема подключения потенциометра к преобразователю частоты

Для ручной регулировки скорости вращения двигателя в автоматических системах с датчиками технологических параметров необходим частотник с двумя или тремя аналоговыми входами.

Подключение потенциометра выполняют экранированными контрольными кабелями. При с расстоянии до частотника меньше 1 метра допускается использовать неэкранируемые провода. Для исключения влияния помех на работу привода реостат размещают как можно ближе к преобразователю частоты.

Номинальное сопротивление подбирают по чувствительности аналогового входа преобразователя. Величина управляющего сигнала должна попадать в диапазон. При значительной длине линии целесообразно обратиться в техническую поддержку производителя преобразователя, в ряде случаев нужно уменьшить номинальное сопротивление потенциометра. Для подавления индукционных помех в протяженных линиях используют емкостные фильтры 100-470 мкФ на 16 В, которые подключают между общей клеммой и движком потенциометра.

Читайте так же:
Как отрегулировать клапана на мазе ямз 236

При подключении необходимо соблюдать правила устройства слаботочных линий: прокладывать кабель вдали от источников электромагнитного излучения, раздельно с силовыми цепями.

Монтаж регулируемых выключателей

Как подключить выключатель с регулятором яркости в загородном доме? Очень легко. Размеры диммера не отличаются от размеров ординарного выключателя, следовательно, он также монтируется с помощью специализированных лапок в разрыв осветительной цепи. Главное здесь, это следить за полярностью.

Общая схема подключения диммера

Общая схема подключения диммера

Вместо просто выключателя диммер устанавливается после демонтажа старого. Для того, чтобы это сделать, надлежит отключить напряжение сети и желательно удостовериться в его отключении индикатором. Потом необходимо снять рамку выключателя, отвинтить винты монтажных лапок. Ослабив винты и на клеммах, можно будет открепить выключатель от проводов.

Различные виды зажимов для проводов

Различные виды зажимов для проводов

Далее следует произвести установку диммера, совершив все вышеописанные действия, начиная с конца, то есть, с присоединения регулятора к проводам.

Соединяем провода с регулятором согласно схеме

Соединяем провода с регулятором согласно схеме

Устанавливаем диммер в подрозетник и крепим его винтами.

Монтаж устройства в подрозетник

Монтаж устройства в подрозетник

Монтируем все декоративные элементы устройства.

Установка декоративной рамки

Установка декоративной рамки

Иногда возникают случаи, когда необходимо регулировать яркость в нескольких местах. В этом случае вам понадобятся два и более диммеров и установка дополнительных подрозетников с прокладкой кабеля.

Схема подключения двух диммеров

Схема подключения двух диммеров

Прокладка кабеля в стене

Прокладка кабеля в стене

Видео: установка диммера

Рекомендации по выбору места установки

Хотя регулируемые выключатели крайне удобны для применения в обыденной жизни, все же лучше не использовать их в следующих типах помещений:

  • Там, где всегда много людей. Большое количество человек в принципе не даст возможности регулировать яркость света.
  • Там, где нет определенности в местах установки светильников.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector