6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотно-регулируемый привод

Частотно-регулируемый привод

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable Frequency Drive, VFD) — система управления частотой вращения ротора асинхронного (или синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя.

Частотный преобразователь (преобразователь частоты) — это устройство, состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный, и инвертора (преобразователя) (чаще с ШИМ), преобразующего постоянный ток в переменный требуемых частоты, амплитуды и формы. Выходные тиристоры (GTO) или транзисторы IGBT или MOSFET обеспечивают необходимый ток для питания электродвигателя. Для исключения перегрузки преобразователя при большой длине фидера между преобразователем и фидером ставят дроссели, а для уменьшения электромагнитных помех — EMC-фильтр.

При скалярном управлении формируются гармонические токи фаз двигателя. Векторное управление — метод управления синхронными и асинхронными двигателями, не только формирующий гармонические токи (напряжения) фаз, но и обеспечивающий управление магнитным потоком ротора (моментом на валу двигателя).

Типы оборудования в зависимости от частоты вращения вала

По этой характеристике классифицируется:

  • тихоходный тип с количеством оборотов не более 300 об/мин;
  • количество оборотов не превышает 1500 об/мин на электродвигателях со средней скоростью вращения;
  • быстроходное оборудование выполняется числом вращения вала не более 6000;
  • количество циклов за минуту не менее 6000 используются на агрегатах со сверхбыстроходностью.

Скорость вращения двигателя влияет на выбор по мощности и крутящему моменту оборудования. Для промышленных станков и больших кранов применяются агрегаты быстроходного или среднего типов. При этом величину об/мин, можно изменять с помощью мотор-редукторов и шкивов.

Определить количество, можно посмотрев бирку, но она может повредиться при эксплуатации. Существует самый простой метод определения скорости вращения, без применения дополнительного оборудования.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

Устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Устройство и принцип работы асинхронного электродвигателя

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Читайте так же:
Как правильно регулировать ток при сварке

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться постоянной частоты вращения вала.

Классификация электродвигателей

      Включение обмотки
    • БДПТ
      (Бесколлекторный двигатель + ЭП |+ ДПР)
    • ВРД
      (Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)

      (многофазный)

      (с контактными кольцами и щетками) —> 5 —>

      • СДПМВ
      • СДПМП
      • Гибридный
      1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
      2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря [5].
      3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля [1].
      4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
      5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
      • КДПТ — коллекторный двигатель постоянного тока
      • БДПТ — бесколлекторный двигатель постоянного тока
      • ЭП — электрический преобразователь
      • ДПР — датчик положения ротора
      • ВРД — вентильный реактивный двигатель
      • АДКР — асинхронный двигатель с короткозамкнутым ротором
      • АДФР — асинхронный двигатель с фазным ротором
      • СДОВ — синхронный двигатель с обмоткой возбуждения
      • СДПМ — синхронный двигатель с постоянными магнитами
      • СДПМП — синхронный двигатель c поверхностной установкой постоянных магнитов
      • СДПМВ — синхронный двигатель со встроенными постоянными магнитами
      • СРД — синхронный реактивный двигатель
      • ПМ — постоянные магниты
      • ЧП — частотный преобразователь

      Устройство и принцип работы

      Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

      Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

      Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

      Elektrodvigateli postoiannogo toka ustroistvo

      Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

      Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

      Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

      Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

      Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

      Виды
      Электродвигатели постоянного тока разделяют по характеру возбуждения:
      Независимое возбуждение

      При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

      Elektrodvigatel p.t. nezavisimoe vozbuzhdenie

      Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

      Параллельное возбуждение

      Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

      Elektrodvigatel p.t. parallelnoe vozbuzhdenie

      Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

      Последовательное возбуждение

      В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

      Elektrodvigatel p.t. posledovatelnoe vozbuzhdenie
      Смешанное возбуждение

      Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

      Elektrodvigatel p.t. smeshannoe vozbuzhdenie

      Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

      Особенности эксплуатации

      Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

      Elektrodvigateli postoiannogo toka skhema

      Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

      Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

      Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

      Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

      На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

      Самостоятельный подбор ЧП

      У вас есть три пути: выбрать общепромышленную модель, выбрать модель для конкретного применения или по характеристикам.

      Выбор общепромышленной модели

      Это наиболее быстрый и простой вариант. Например, универсальный общепромышленный векторный ЧП большой мощности «Веспер» из линейки EI -9011 в защищенном корпусе класса IP54 подходит для большинства задач и может использоваться для управления приводами практически всех промышленных механизмов в сложных условиях эксплуатации. Минус такого решения — высокая цена универсального ЧП.

      Выбор по стандартному ряду мощностей электродвигателей

      Это тоже быстрый и удобный вариант. Как правило, номинальная мощность большинства преобразователей соответствует стандартной серии.

      Стандартные серии электродвигателей имеют следующие уровни (номинальной) мощности:

      кВт0,060,090,120,180,250,370,550,751,101,502,203,00
      кВт4,005,507,5011,015,018,522,030,037,045,055,075,0

      Преобразователь частоты подбирается такой же мощности, что и двигатель, или чуть большей. Например, если мощность привода 1,5 кВт, то преобразователь может быть 1,5-2 кВт.

      Недостаток этого решения — можно переплатить за избыточную мощность частотника, если электродвигатель не нагружается полностью. Или наоборот: если привод часто работает с пиковыми нагрузками, то приобретенный по стандартной серии ЧП может не справляться с обеспечением работоспособности.

      Выбор по характеристикам

      1. Электропитание и диапазон выходной частоты.

      Количество питающих фаз и номинальное напряжение (В) — первое, на что нужно обращать внимание при выборе. Если это не учесть и неправильно подключить оборудование, возникнут аварийные ситуации и, как следствие, техника выйдет из строя. Выпускаются одно- и трехфазные модели с напряжением на 220 В и 380 В соответственно. Однофазная модель ЧП имеет трёх фазный выход для подключения трёхфазного электродвигателя. Есть также высоковольтные мегаваттные установки для особо мощных агрегатов.

      Напряжение местных электросетей, а вернее его качество, также необходимо учитывать при выборе ЧП. Несмотря на то, что Российский стандарт предусматривает для однофазной сети 220 В, а для трехфазной 380 В, на деле бывают существенные провалы и скачки. Если произойдет падение входного напряжения, электропривод аварийно остановится, но если будет скачок вверх, он может сгореть. Поэтому чем шире диапазон допустимых значений напряжения прибора, тем лучше (смотреть их нужно в техническом описании). Модели с широким диапазоном стоят дороже.

      Частота (Гц) — следующая по важности характеристика, так как непосредственное управление скоростью вращения вала осуществляется с помощью изменения частоты выходного напряжения. Нужно обратить внимание на диапазон значений выходной частоты ПЧ (например, от 0 до 400 Гц). Чем шире диапазон, тем больше возможностей. У преобразователей частоты, на основе инвертора напряжения, выходная частота не зависит от значения частоты напряжения питания. Все ПЧ ООО «Компании Веспер» выполнены по схеме инвертора напряжения с промежуточным звеном постоянного тока.

      2. Мощность и номинальный ток.

      Выбор частотного преобразователя по мощности и номинальному току применяемого электродвигателя можно осуществить следующими способами:

      • по значению номинального тока электродвигателя по формуле: Iпч = (1.05…1.1) х Iдв ;
      • на основе полной мощности (кВА), рассчитывается по формуле: Рпч = Uдв х Iдв х √3 / 1000.

      Важно, чтобы выходной ток/мощность частотника был равен или превышал номинальный ток/мощность двигателя. Поэтому для правильного выбора необходимо знать номинальные характеристики электродвигателя.

      Получить нужные сведения можно из технической документации, по надписям на корпусе (шильдикам) либо провести замеры.

      1.jpg

      Если двигатель периодически работает с пиковой нагрузкой (значительный пусковой момент на валу, быстрый разгон, резкое торможение), это нужно учитывать. Следует выбирать модель, которая в состоянии обеспечить перегрузочную способность.

      3. Методы управления.

      Есть два основных метода управления:

      • векторный;
      • скалярный.

      Приборы со скалярным управлением стоят дешевле и проще в настройке, но они имеют малый диапазон (1:10) и низкую точность регулировки (погрешность скорости может быть 5-10 %). Такие частотно регулируемые электроприводы целесообразно использовать, когда параметры нагрузки заранее известны и не «плавают» при постоянной частоте. Это могут быть различные механизмы с фиксированным режимом работы, отвечающие за поддержание определенного состояния техпроцесса. К примеру: насосы, вентиляторы, компрессоры.

      Векторные приборы более технологичны, имеют широкий диапазон режимов и регулировок (>1:200) с практически нулевой погрешностью, могут поддерживать заданный момент при меняющейся скорости и на сверхмалых оборотах, а также постоянную скорость при резко меняющейся нагрузке. Но они стоят дороже и требуют тонкой индивидуальной настройки специалистом. Такие векторные ЧП подходят для конвейеров, лифтов, транспортеров, кранов, прессов, токарных станков.

      Метод управления электродвигателемДиапазон регулирования скоростиПогрешность скорости, %Время нарастания момента, мсПусковой моментЦенаСтандартные применения
      Скалярный1:105-10Не доступноНизкийОчень низкаяНизкопроизводительные: насосы, вентиляторы, компрессоры, ОВК (отопление, вентиляция и кондиционирование)
      ВекторныйЛинейныйПолеориентированное управление>1:200<1-2ВысокийВысокаяВысокопроизводительные: краны, лифты, транспорт и т.д.
      Прямое управление моментом с ПВМ>1:200<1-2ВысокийВысокая
      НелинейныйПрямое управление моментом с таблицей включения>1:200<1ВысокийВысокая
      Прямое самоуправление>1:200<1-2ВысокийВысокаяВысокопроизводительные: электрическая тяга, быстрое ослабление поля

      4. Дополнительные опции частотного преобразователя для электродвигателя.

      Чтобы понять, какие дополнительные возможности могут понадобиться, необходимо ориентироваться на круг задач (для чего предполагается использовать ЧП), эксплуатационные нагрузки (сколько приводов будет контролировать и в каком режиме), условия, в которых прибор будет работать (нужна ли спецзащита корпуса и др.).

      • Для управления приводами с лёгкой нагрузкой и стабильными оборотами (вентиляторы и насосы) выбирают недорогую простую модель с ограниченным набором регулировок и минимальными опциями.
      • Для управления приводами с переменными нагрузками, быстрыми стартами и остановками (лифтовые или конвейерные двигатели) нужен ЧП с модулем отвода излишков энергии, возникающих при торможении.
      • Для высокоточных задач (в станках различного назначения) может понадобиться прибор с тонкой настройкой в широком диапазоне режимов и сохранением заданного крутящего момента на сверхмалых оборотах.

      Дополнительных опций много, как и задач, которые решают частотники. Поэтому при выборе модели частотного преобразователя для электродвигателя полезно написать свой список с теми опциями, которые необходимы.

      Мы составили перечень наиболее востребованных опций:

      • Дистанционное управление.
      • Централизованное управление в составе кластера.
      • Контроль работы только одного привода.
      • Контроль сразу нескольких двигателей.
      • С прямой связью.
      • Защищенный корпус (степень по классу IP).
      • Модульность.
      • Встроенный дисплей и различные индикаторы.
      • Программирование с помощью встроенного пульта управления или компьютера.
      • Поддержка обратной связи.
      • Наличие дискретных, аналоговых, цифровых выходов.
      • Метод модуляции и диапазон значений частоты ШИМ).
      • Тормозной модуль и способ отвода излишков энергии при торможении (рекуперация, перевод в тепло).
      • Автонастройка.
      • Возможность пуска (с поиском скорости) свободно вращающегося двигателя.

      Если в комплектации не будет всех нужных опций из списка, можно заказать дооснащение. Компания «Веспер» предоставляет такую возможность.

      Также полезно знать, что ведущие производители выпускают специальные серии преобразователей, настроенные и оптимизированные для решения конкретных задач. В них уже учтены все нюансы и включены необходимые опции.

      Серия частотных преобразователей «Веспер» EI-P7012 ориентирована на работу с насосами. Серия E3-8100В идеально подходит для вентиляторов.

      5. Гарантийные условия и сервисное сопровождение.

      Технические характеристики при выборе преобразователя частоты важны, но нужно еще учитывать качество сборки и возможность сервисного сопровождения. Обращайте внимание на:

      • гарантийные условия;
      • продуманность компоновки и конструкционных решений;
      • использование надёжных комплектующих;
      • контроль качества и отсутствие брака в готовых изделиях;
      • репутацию производителя и множество успешно выполненных проектов;
      • профессиональное гарантийное и послегарантийное сервисное обслуживание;
      • доступность специалистов для консультаций;
      • скорость поставки необходимых комплектующих;
      • наличие сети сервисных центров.

      Обеспечить все это на должном уровне могут компании с мощным интеллектуальным и экономическим потенциалом, отлаженным высокотехнологичным производством и многоступенчатым контролем качества.

      Среди российских производителей компания «Веспер» соответствует этим критериям в полной мере. Высокое качество продукции подтверждают сертификаты. Оборудование «Веспер» успешно работает на сотнях объектах электроэнергетики, металлургии, машиностроения, нефтегазового комплекса и других отраслей промышленности.

      Схема подключения электродвигателя к сети

      соединение клемм асинхронного двигателя

      Электродвигатели переменного тока бывают трех и однофазные.
      Асинхронные однофазные двигатели имеют на корпусе 2 вывода и подключить их к сети не составляет трудности. Т.к. вся бытовая электрическая сеть в основном однофазная 220В и имеет 2 провода — фаза и ноль. С синхронными все намного интереснее, их тоже можно подключить с помощью 2 проводов, достаточно обмотки ротора и статора соединить. Но соединять их нужно так, чтобы обмотки однополюсного намагничивания ротора и статора располагались напротив друг друга.
      Сложности представляют двигатели для 3ех фазной сети. Ну во-первых у таких двигателей в основном в клеммной коробке 6 выводов и это означает что обмотки двигателя нужно подключать самому, а во-вторых их обмотки можно подключать разными способами — по типу «звезда» и «треугольник». Ниже приведен рисунок соединения клем в клеммной коробке, в зависимости от типа соединения обмоток.

      Подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

      Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в раз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних. В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).

      схема кключения синхронного и ахинхронного двигателя трехфазного в сеть

      Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рисунке. Обмотка ротора этого двигате­ля соединена с пусковым реостатом ЯР, создающим в цепи рото­ра добавочное сопротивление Rдобав.

      голоса
      Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector