0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматическая регулировка яркости светодиодов в зависимости от освещения

Особая конструкция светодиода с изменением цветности как в галогенных лампах

Люди любят то, к чему привыкли, а все непривычное отвергают. Когда галогенный светильник или лампа накаливания тускло светят, это значит, что через нить накала проходит меньший ток. Нить остывает и начинает испускать теплый свет с большим излучением в красной полосе спектра. Таким образом, мы предполагаем, что диммирование (затемнение) лампы приведет к более теплой, успокаивающей атмосфере. Светодиодные источники освещения излучают свет благодаря другому физическому явлению — электролюминесценции, а не накаливанию. Нет никакого температурного сдвига, когда ток, протекающий через светодиодный кристалл, уменьшается для снижения силы света. Необходимо конструировать светодиоды (LED) и твердотельные системы освещения (SSL) так, чтобы их диммирование происходило так же, как и их галогенных аналогов.

Направленные галогенные лампы очень популярны в индустрии гостиничного бизнеса и общественного питания. Однако в этом качестве использование зарекомендовавшего себя светодиодного освещения является более целесообразным. В частности, LED-освещение гораздо эффективнее в плане преобразования электричества в свет, так как экономнее расходует энергию и не нагревается до высоких температур. В любом случае, регулировка яркости светодиодов с таким же цветовым сдвигом, как и у галогенных источников, а также поддержка качества цвета являются самыми важными техническими задачами для разработчиков LED-излучателей и оборудования.

Цель исследований — найти светодиодный излучатель, который точно следует совершенной кривой излучения черного тела при диммировании. Или, что еще лучше, излучатель, который следует кривой еще более точно, чем его галогенный аналог. Чтобы понять, как можно достичь такого результата, важно учитывать особые требования к LED-кристаллу, подложке, оптической и управляющей системам, которые и позволяют создать и сделать коммерчески выгодным направленное светодиодное оборудование галогенного типа.

Почему галогенные лампы могут регулироваться таким образом?

Сначала давайте разберемся более подробно, как работали старые системы освещения. Все мы знаем, что если нагреть кусочек металла, он раскалится. Этот самый накал и есть тепловое излучение, вид электромагнитного излучения, вызываемый тепловым движением заряженных частиц металла. Цвет каления меняется от красного к оранжевому, затем к желтому, белому и, наконец, доходит до синего. В то время как яркость свечения зависит от материала, спектральный состав зависит только от температуры. Под абсолютно черным телом понимается идеальное тело, которое поглощает все электромагнитное излучение, его достигающее, не передавая или отражая энергию. Когда черное тело нагрето, частота или цветовая температура излучения могут быть отмечены на графике в соответствии с принятой формулой (формулой Планка) для абсолютно черного тела (рис. 1).

Цветовая температура излучения на графике в соответствии с формулой Планка для абсолютно черного тела

Рис. 1. Когда черное тело нагрето, цветовая температура излучения может быть отмечена на графике в соответствии с формулой Планка для абсолютно черного тела

Принцип работы галогенных ламп состоит в пропускании электрического тока через вольфрамовую нить, помещенную в стеклянную оболочку. Небольшие объемы йода или брома содержатся внутри оболочки, чтобы испаренный вольфрам отлагался обратно на нити накала, а не на стенки оболочки лампы. Свет, излучаемый вольфрамовой нитью, следует совершенной кривой излучения черного тела довольно точно, однако иногда отклоняется от нее, выдавая зеленоватый оттенок на некоторых температурах. Качество цвета, определенное как показатель цветопередачи (CRI), хорошо поддерживается в галогенных лампах, когда они горят в «полнакала».

Почему светодиодные лампы гаснут по-другому?

В LED-освещении свет создается не с помощью теплового излучения. Светодиоды создают свет при помощи электролюминесценции. Свет излучается, когда электроны и дырки рекомбинируют в материале — полупроводнике. Спектр, или цвет излучаемого света определяется в основном компонентами полупроводника и люминофорами — химическими элементами, покрывающими кристалл светодиода. В результате, когда меньший ток проходит сквозь светодиод и он горит менее ярко, сдвиг цветовой температуры оказывается очень мал, поскольку тепловое излучение представляет ничтожную часть излучаемого света. В действительности изменение оттенка во время потускнения светодиода едва ли заметно для человеческого глаза.

Читайте так же:
Vectra b регулировка фар фары

Мы привыкли к галогенному типу регулировки яркости и высокому показателю цветопередачи при диммировании галогенного освещения. Цветопередача лучше всего заметна на оттенках кожи. С насыщенным показателем CRI цвет кожи выглядит натурально, даже когда уровень освещенности уменьшается. Человеческий глаз гораздо более чувствителен к изменению цветов, нежели к небольшим изменениям яркости. В дневное время мы более всего чувствительны к синему цвету, именно поэтому у нас такое хорошее восприятие смены цвета. Мы распознаем детали через зеленые и красные части спектра и ощущаем изменения освещенности в основном через зеленую часть. Между прочим, чистый белый — это, по определению, на 76% зеленый, на 22% красный и на 12% синий свет. Мы привыкли к галогенному типу регулирования яркости, нам так привычно и комфортно, поэтому если свет приглушается, незаметно создавая теплый белый, — это кажется искусственным, и не стоит даже пытаться это делать в индустрии гостиничного бизнеса и общественного питания (рестораны, бары или отели).

Какие характеристики необходимы?

Если мы хотим изменить цвет светодиодного освещения на протяжении кривой излучения черного тела или другой кривой, когда светодиод гаснет, мы должны смешать свет как минимум из трех кристаллов, чтобы создать диапазон белых тонов или цветовых температур. Чтобы создать белый LED-излучатель, нанесите на синий светодиод сочетание красного и желтого люминофоров. Обычно используются кристаллы с длиной волны в 445-455 нм, однако можно приспособить и кристаллы с большей длиной волны. Комбинация из кристалла с определенной длиной волны и желтого/красного люминофоров — это тот самый способ, который позволяет достичь желаемых цветовых точек.

Люминофоры могут быть напылены на светодиодную пластину до того, как она будет разрезана на кристаллы, либо нанесены непосредственно на кристалл. Последний метод создает прямой тепловой мост для слоя люминофора, позволяя ему меньше нагреваться и показывать более высокие характеристики. В этом случае свет от кристалла можно подогнать в пределах трех эллипсов МакАдама.

Сочетая различные комбинации кристаллов и люминофоров, можно получить различные цветовые температуры в диапазоне 1800-5500 К, которые потом смешиваются в один световой пучок. Чтобы свет смешивался эффективно, светодиодный кристалл должен быть хорошо закреплен на подложке. Пропускание тока через светодиод приводит к нагреву, что влияет на стабильность во время эксплуатации, однако снижение тока приведет к уменьшению светосилы.

Этот побочный эффект может быть нивелирован двумя способами. Вместо того чтобы использовать клеящее вещество для присоединения кристалла к подложке, которое создает сильный тепловой барьер, ограничивая тем самым эффективное рассеяние тепла от LED-кристалла, лучше применять запатентованную технологию, в основе которой лежит золотой эвтектический сплав для крепления кристалла с гораздо лучшей теплопроводностью. Если коэффициент теплопроводности (КТ) многослойной керамической подложки подобран близко к КТ используемого светодиодного кристалла, то это уменьшит нагрузку при его нагреве. Это сочетание технологий позволяет использовать кристалл на более высоких токах, чтобы вырабатывалось больше света, было занято меньше места и не достигались повреждающие p-n-переход температуры. Если основная стеклянная линза расположена сверху на кристалле, то она не будет портиться со временем так, как портилась бы силиконовая линза, поэтому постоянство цвета обеспечивается на протяжении всего срока эксплуатации излучателя.

Смешивание цветов начинается близко к кристаллу и может быть проделано с помощью хорошо подобранной вторичной оптики, которая также позволяет точно сфокусировать луч света через конструкцию полного внутреннего отражения (рис. 2). Однородное качество света достигается по всей длине луча.

Сочетание запатентованных технологий позволяет этим небольшим излучателям вырабатывать насыщенный, высококачественный свет

Рис. 2. Сочетание запатентованных технологий позволяет этим небольшим излучателям вырабатывать насыщенный, высококачественный свет, который может быть точно сфокусирован при помощи вторичных линз полного внутреннего отражения

Читайте так же:
Полукольца ремень длина регулировать

Было доказано, что небольшой излучатель с подобранной вторичной оптикой может испускать в два раза больше светового потока, чем стандартное сочетание излучателя и отражателя (рис. 3). Более того, комбинация из компактного излучателя и линзы создает более мягкий «край» луча и уменьшает испускаемый свет за его пределы, тем самым сводя на нет нежелательный блеск. Это довольно важное требование для отраслей гостиничного бизнеса, общественного питания и других критичных к освещению областей.

Распределение яркости к углу обзора

Рис. 3. Распределение яркости к углу обзора, сравнение светодиодной конструкции полного внутреннего отражения (ПВО) и обычной отражающей технологии. Небольшие излучатели с линзами ПВО производят в два раза больше люменов при минимальном нежелательном блеске

Управление драйвером

Технологии излучателя и излучателя/линзы, описанные ранее, могут лечь в основу настраиваемой белой светодиодной платформы. Например, LuxiTune, разработанный LED Engin, доступен как излучатель со вторичной оптикой ПВО и встроенным драйвером (рис. 4). Данный модуль позволяет ускорить создание новых продуктов на рынке осветительного оборудования. В этом случае одиночный излучатель состоит из 12 кристаллов, связанных через три канала, т. е. три группы по четыре кристалла. Конструкция подложки позволяет работать независимо с каждым кристаллом. Вторичная оптика создает луч с углом в 24, 32 или 45° с минимальной потерей света и без бликов. Печатная монтажная плата, на которой и расположен излучатель, дополняет модуль управляющей электроники, которая определяет, какой канал отводится для группы связанных кристаллов. При помощи триангулирования света от каждой из групп температура цвета варьируется от 3000 К при максимальной светосиле до 1800 К при полном погасании (сила света менее 2%, рис. 5). Плата управления позволяет использовать цепь сопряжения в стандартизированных, широко доступных и недорогих диммерах (0-10 В) или кнопочном управлении. DMX (Digital Multiplex) интерфейс не является обязательным. Эта платформа работает от одиночной, нерегулируемой шины питания на 24 В. Источники питания переменного и постоянного тока, подающие данное напряжение, есть в наличии по доступным ценам.

Небольшой излучатель, вторичная оптика и панель управления драйвером

Рис. 4. Небольшой излучатель, вторичная оптика и панель управления драйвером позволяют использовать затемненное освещение галогенного типа со всеми преимуществами LED-освещения

Коррелированная цветовая температура LuxiTune близко следует кривой излучения черного тела

Рис. 5. Коррелированная цветовая температура LuxiTune близко следует кривой излучения черного тела

Управление происходит при помощи запатентованных алгоритмов, работающих на микроконтроллере. Программное обеспечение гарантирует ровную цветовую температуру и плотность потока по всему диапазону рабочих температур, при этом не требуется никакой перекалибровки. Процессы и технологии, описанные ранее, позволяют гарантировать, что ровность цветовой температуры достигает трех квадратичных отклонений при сравнении цветов или эллипсов МакАдама, гарантируя, таким образом, идентичные результаты для светового оборудования во время установки. На температуре в 3000 К показатель цветопередачи (CRI) 90 и коэффициент цветопередачи красного цвета (R9), равный 80, вполне достижимы, а на всем затемненном диапазоне средний показатель цветопередачи равняется 85, а R9 — 70. Типичный световой поток достигает 1100 лм при постоянной температуре линз полного внутреннего отражения. Энергопотребление составляет 17,3 Вт при светоотдаче в 63 лм/Вт. При максимальной светосиле такие излучатели обычно соответствуют галогенной лампе на 70 Вт, однако сохраняют до 70% энергии. В дальнейшем бонусом также будет и отсутствие сильного нагрева со стороны лампы, что позволит избежать угроз безопасности, к которым может привести высокая температура. Запатентованные технологии по отбору и покрытию светодиодных кристаллов, присоединению кристалла к подложке, конструкции подложки, конструкции первичной и вторичной оптики и разработке управляющей электроники теперь соединены в одно целое для создания легко внедряемых решений, позволяющих получать затемненное освещение галогенного типа от небольших, эффективных и экономичных светодиодов.

Преимущества диммирования

  • Возможность создания и быстрой смены сценариев освещения, недостижимых при помощи стандартных двухпозиционных выключателей.
  • Регулировка яркости позволяет эксплуатировать осветительные приборы в щадящем режиме, что продлевает их срок службы.
  • Диммирование приводит к уменьшению энергопотребления и тепловыделения.
Читайте так же:
Ящик для регулировки давления

Наиболее широкие возможности по управлению световой средой открываются при сочетании диммирования с разделением световых приборов на группы. Такой подход позволяет управлять общим светом и акцентами независимо друг от друга, реализуя самые интересные и сложные сценарии.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиоде зависит от напряжения. При незначительном увеличении вольтажа электроток повышается многократно, вместе с ним и яркость свечения. Но этим параметром можно управлять, если включить в схему аналоговый или широко-импульсный модулятор, обеспечивающий функцию диммирования.

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча (небольшом угле излучения) яркость свеяения увеличивается независимо от объема потока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которого напрямую зависит объем светового потока и яркость свечения – величина кристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм, световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаются большими размерами и высокими показателями интенсивности свечения. Это объясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

О прошивках

Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

Схемы аппаратуры

Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    (запросы) (хранилище) (запросы) (запросы)

Справочники

На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

Marking (маркировка) — обозначение на электронных компонентах

Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

Читайте так же:
Мотоблок регулируем глубину культивации

Package (корпус) — вид корпуса электронного компонента

При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

  • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
  • SOT-89 — пластковый корпус для поверхностного монтажа
  • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
  • TO-220 — тип корпуса для монтажа (пайки) в отверстия
  • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
  • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
  • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

Краткие сокращения

При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

СокращениеКраткое описание
LEDLight Emitting Diode — Светодиод (Светоизлучающий диод)
MOSFETMetal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
EEPROMElectrically Erasable Programmable Read-Only Memory — Электрически стираемая память
eMMCembedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
LCDLiquid Crystal Display — Жидкокристаллический дисплей (экран)
SCLSerial Clock — Шина интерфейса I2C для передачи тактового сигнала
SDASerial Data — Шина интерфейса I2C для обмена данными
ICSPIn-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
IIC, I2CInter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
PCBPrinted Circuit Board — Печатная плата
PWMPulse Width Modulation — Широтно-импульсная модуляция
SPISerial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
USBUniversal Serial Bus — Универсальная последовательная шина
DMADirect Memory Access — Модуль для считывания и записи RAM без задействования процессора
ACAlternating Current — Переменный ток
DCDirect Current — Постоянный ток
FMFrequency Modulation — Частотная модуляция (ЧМ)
AFCAutomatic Frequency Control — Автоматическое управление частотой

Частые вопросы

После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

Кто отвечает в форуме на вопросы ?

Ответ в тему Посоветуйте схему авторегулировки яркости электронных часов как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

Как найти нужную информацию по форуму ?

Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

По каким еще маркам можно спросить ?

По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

Какие еще файлы я смогу здесь скачать ?

При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

Полезные ссылки

Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

  • 26 Окт 2014
  • 26 Окт 2014
  • 26 Окт 2014
  • 26 Окт 2014

А если на фотоэлементе от убитого калькулятора? В базу его какого-нибудь транзистора с большим коэффициентом усиления, а транзистор поставить по управлению 1117 adj.

Добавлено 26-10-2014 21:00

Резисторы в схеме расставить под нужные внешние условия.

  • 26 Окт 2014

KVI, почему нет ? TL431 более чем от 2,5В работает. Напряжение стабилизации задаёт фотодатчик в резистивном делителе.стабильное напряжение на эммитере обеспечивает стабильный ток через резистор в эммитере , а значит и через коллектор последовательно с которым включены светодиоды. Те же яйца со схемой включения 1117 как стабилизатор тока. Если использовать стабилизатор-регулятор напряжения , то придётся работать в диапазоне нескольких десятых долей вольта. Например при 2,4 светодиод не горит , а при 3в сгорает ( некоторые красные) А темнее-светлее приходится ловить в более узком диапазоне. И вся эта хрень зависит от внешних факторов
Но трабл в том что суммарный ток через диоды будет определяться активными сегментами. И если ток будет постоянный , то яркость будет зависеть от количества активных сегментов. Поэтому на Аттиньке будет грамотней и проще. ну 555 таймер. ну , куда ещё проще?

Читайте так же:
Как отрегулировать сцепление на мазе двухдисковое не снимая коробки

Добавлено Monday, 27 October 2014, 00:28

ссылка скрыта от публикации

shema-e_konomichnogo-svetilnika_127.jpg

  • 27 Окт 2014
  • 27 Окт 2014
  • 27 Окт 2014
  • 27 Окт 2014
  • 27 Окт 2014

Какая шторка. Мы в каком веке живем? Лень, двигатель прогресса .

Смотрели мультик "Нехочуха" . ? Вот скоро и у нас так будет.

  • 27 Окт 2014

KVI, в принципе инвертор использовать как усилитель тока , включив в базу фотодатчик. Тогда стабилизации тока не будет и регулироваться он будет от освещения. Но придётся потрахаться с подбром парметров делителя

Логика и принцип работы системы освещения

Рассмотрим пример работы матричной оптики в рамках разработки Audi Matrix LED. Каждая фара автомобиля состоит из 5 секций, которые оснащены пятью светодиодами. В общей сумме получается 25 элементов на одного устройство. При этом для каждой группы светодиодов предусмотрена собственная линза, позволяющая изменять фокус, яркость и направленность освещения.

Блок управления контролирует и управляет работой матричных фар. Специально для отслеживания дорожной ситуации в передней части автомобиля расположен датчик, позволяющий обнаруживать приближение встречного автомобиля. При поступлении сигнала от сенсора система изменяет количество рабочих секций, чтобы не ослеплять водителей, но поддерживать достаточный уровень освещенности.

Системы света с матричной оптикой синхронизированы с устройствами навигации, а также получают данные о внешней среде от видеокамеры. Это позволяет увеличить количество режимов работы, а также распознавать объекты и фокусироваться на них.

Audi Matrix LED

Замеры освещенности сбоку

Проведем замеры под углом в 90 градусов, то есть сбоку. Угол свечения светодиодов составляет 120 градусов, соответственно, сектор, в котором разница освещенности будет только заключаться в 30 градусах от плоскости, это вычисляем (180-120)/2=30 градусов.

Замер освещенности сбоку

Замер освещенности сбоку

Как видно по фото, освещенность на этой границе практически одинакова, соответственно с колбой 216 Лк, без неё 229 Лк. Разница 12 Лк, то есть её практически нет. Только не смотрите на освещения по фото, так как камера подстраивается сама, и кажется, что разница есть, хотя Люксметр показывает равные значения.

В качестве примера мы взяли лампу Philips и сняли с нее защитную колбу, вот такие результаты у нас получились:

  • С колбой – 500 люмен.
  • Без колбы – 689 люмен.

Как видите, результат ни лицо, мощность увеличилась на 27%. Если такая лампа будет установлена в нежилом помещении – это прекрасное решение.

Совет, можно купить дешевую лампу и снять с нее колбу, так вы получите хорошую яркость по низкой стоимости.


В завершении


Владельцам небольшой квартиры можно ограничиться покупкой смарт-ламп в необходимом количестве или потолочными «умными» светильниками, со встроенным датчиком движения. Такая система для стандартной двухкомнатной квартиры может стоить относительно недорого – от 15 тысяч рублей. Примечательно, что ее окупаемость рассчитана всего за пару лет, ведь «умный» свет позволяет сократить потребление электроэнергии в среднем в 1,5-2 раза. Такой эффект достигается благодаря использованию датчиков освещения и движения, которые заботятся о рациональном использовании ресурсов.

Автоматическое управление и контроль включения и выключения света в зависимости от присутствия в помещении человека гарантированно снижает потребление энергии электричества до 13%. А при возможности регулирования освещения показатели экономии вырастают до 20%.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector