9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Об автоматике для электрокотла и регулировке мощности

Об автоматике для электрокотла и регулировке мощности

Автоматика для электрокотлов отопления может продаваться вместе с агрегатом, но чаще всего, её приходится устанавливать отдельно. При этом необходимый узел можно приобрести в магазине, либо собрать его самостоятельно, что при желании совсем не сложно. Поэтому, предлагаю вам сделать такое оборудование своими руками, предварительно разобравшись в схеме и назначении тех или иных элементов. Я не хочу усложнять такой узел по одной простой причине – чем меньше деталей, тем надежнее работа системы и это доказано временем и практикой.

2. Назначение

Вольтодобавочные трансформаторы (линейные регуляторы) применяются для регулирования напряжения в отдельных линиях или в группе линий. Их применяют, например, для улучшения работы сетей, в которых используются трансформаторы без регулирования под нагрузкой. Линейные регуляторы позволяют создать в сети дополнительную ЭДС, которая складывается с вектором напряжения сети и изменяет его. На рис. 1 показано схематическое изображение вольтодобавочного трансформатора (линейного регулятора).

Рисунок 1 – Схемное изображение линейного регулятора

Установка вольтодобавочного трансформатора позволяет выравнивать напряжение в электросети; устранять несимметрию напряжения на определенном участке цепи; снижать опасные последствия отгорания нулевого проводника

  • вольтодобавочных автотрансформаторов;
  • низковольтных шкафов контроля и управления на базе микропроцессорных устройств;
  • соединительных кабелей;
  • ограничителей перенапряжений нелинейных (ОПН);
  • разъединителей (по заказу);
  • монтажного комплекта для установки элементов БАРН;
  • программного обеспечения.

Вольтодобавочный автотрансформатор (далее АТ) выполнен на базе однофазного масляного автотрансформатора наружной установки, имеющем общую и последовательную обмотки. Последовательная обмотка имеет 32 ступени для регулирования напряжения в диапазоне ±10%. Регулирование осуществляет переключатель ступеней. Регулирование осуществляется под нагрузкой. АТ оснащен встроенными измерительными трансформаторами тока и напряжения. В составе БАРН может быть два или три АТ.

Управление переключателем ступеней осуществляется от микропроцессорного устройства контроля и управления.

Разъединители используются для осуществления непрерывности электроснабжения при проведении ремонтных или профилактических работ с элементами БАРН, а также обеспечивают видимый разрыв для выполнения безопасных методов работы персоналом.

Читайте так же:
Viper22a схема регулировка тока

Ограничители перенапряжений служат (далее ОПН) для защиты обмоток БАРН от возможных перенапряжений.

Принцип действия

Принцип действия аналогичен принципу действия автотрансформатора.

Регулирование напряжения осуществляется путем геометрического сложения напряжения общей и последовательной обмоток. Во всех режимах работы автотрансформатора электромагнитная взаимосвязь между двумя обмотками сохраняется. Понижение или повышение выходного напряжения относительно входного осуществляется благодаря изменением полярности последовательной обмотки. Для режима с понижением выходного напряжения полярность на обеих обмотках совпадает. В режиме повышения выходного напряжения происходит смена полярности на последовательной обмотке. Смена полярности напряжения на последовательной обмотке производится реверсивным переключателем

В процессе работы ШУ производит измерение напряжения со стороны нагрузки и сравнивает его с заданным напряжением. Если фактическое напряжение отличается от заданного, ШУ подает команду на электропривод, который перемещает переключатель на соответствующую ступень для повышения (или понижения) напряжения.

Принципиальная электрическая схема.

· S – высоковольтный ввод со стороны источника;

· L – высоковольтный ввод со стороны нагрузки;

· SL – высоковольтный ввод общей точки.

Принципиальная электрическая схема

Технические данные

БАРН применяются для работы в сетях на класс напряжения 6 и 10 кВ и частотой 50 Гц.

Виды регулирования

Различают два вида переключений;

  • ПБВ — переключение без возбуждения. Производится при отсутствии напряжения на первичной обмотке.
  • РПН — регулировка под нагрузкой. Выполняется во время работы, а контакты переключателя имеют дугогасящие камеры.

Само переключение выполняется разными способами:

  • Ручное. Производится оператором с пульта управления исходя их показаний приборов.
  • Дистанционное. Также выполняется оператором, но не вручную, а с пульта управления.
  • Автоматическое. Осуществляется системой АРНТ по заранее заданным параметрам.

Есть три принципа работы системы автоматической регулировки:

  • Стабилизация. Происходит поддержание стабильного выходного напряжения.
  • Программное регулирование. Производится по заданной программе, например, в выходные напряжение слегка понижается для экономии электроэнергии или во время плавки в электропечах и повышенных потерях в кабелях повышается для обеспечения нормальной работы других потребителей.
  • Следящая система. Учитывает различные параметры в разных участках сети и кабельных линий большой протяжённости.
Читайте так же:
Вихрь 800 50 регулировка давления

Информация! Чем больше точек измерения и учтенных факторов, тем точнее регулировка, но это приводит к усложнению и удорожанию системы, поэтому при проектировании учитывается влияние только основных параметров.

Устройство систем переключения

Переключатели устанавливаются со стороны первичной обмотки. Ток, протекающий в ней ниже и регулятор получается меньше и дешевле. Проще всего устроен переключатель для переключения без возбуждения, но процесс настройки связан с отключением потребителей.

При регулировке под нагрузкой возможна ситуация, при которой подвижные контакты замыкают одновременно два вывода, образуя короткозамкнутый виток. Для ограничения тока в нем устанавливаются токоограничивающие реакторы или резисторы.

Способы регулирования напряжения трансформатора под нагрузкой

Регулирование напряжения трансформаторов способом РПН производится в принципе так же, как и способом ПБВ, но число ответвлений обмотки, т. е. число регулировочных ступеней, обычно бывает больше, а диапазон регулирования — шире. Так, ГОСТ 12022—76 для трансформаторов мощностью 63—630 кВА установил диапазон регулирования напряжения относительно номинального ±10% ступенями по 1,67% (±6X1,67%). ГОСТ 11920—73 разрешил для трансформаторов мощностью 1000—80000 кВА иметь различные диапазоны регулирования: ±9, ±10, ±12%. Существуют серии трансформаторов с еще большим диапазоном: ±16, ±22, ±36. Еще более «глубокое» регулирование требуется для некоторых специальных трансформаторов, например электропечных, где отношение пределов регулирования напряжения обмотки НН нередко составляет 1 : 2, 1 : 3 и даже 1 : 5.

Рассмотрим наиболее распространенную схему работы переключающего устройства с токоограничивающим реактором (рисунок 2). Переключающее устройство имеет следующие основные части: избиратель ответвлений, контактор, токоограничивающий реактор, привод устройства. В схеме имеется два отводящих (токосъемных) контакта избирателя П1 и П2, два контактора К1 и К2, токоограничивающий реактор Р (Iн — номинальный ток трансформатора).

  • а — положение «два вместе»;
  • б — разомкнут контакт ФК2;
  • в — положение «мост»;
  • г — разомкнут контакт К1
Читайте так же:
Регулировка оборотов на сузуки гранд витара

На рисунке 2, а оба отводящих контакта установлены на одном ответвлении обмотки. Такое положение контактов называют «два вместе». Номинальный ток нагрузки делится поровну между двумя половинами переключающего устройства. При необходимости перейти на другое ответвление (ступень) обмотки привод в первую очередь размыкает контакты контактора К2 (рисунок 2, б). Эти контакты разрывают ток, равный половине номинального, и между ними возникает электрическая дуга. После гашения дуги весь ток проходит только через вторую (верхнюю) половину переключающего устройства. Отводящий контакт избирателя (П2) при отсутствии тока (цепь разорвана) переходит на другое ответвление обмотки, после чего контакты К2 вновь замыкаются (рисунок 2, в).

Такое положение переключающего устройства обычно называют положением «мост». Как и в положении «два вместе», номинальный ток нагрузки делится пополам между каждой половиной переключающего устройства. Однако в положении «мост» кроме нагрузочного тока возникает циркулирующий ток, замыкающийся внутри контура, образованного частью обмотки трансформатора и реактором (рисунок 2, в). Величина циркулирующего тока ограничивается сопротивлением контура — в основном сопротивлением реактора. Обычно сопротивление реактора подбирают так, чтобы величина циркулирующего тока была равна половине номинального. В этом случае ток, проходящий через отводящие контакты П1 и П2, не будет больше номинального и нет опасности их чрезмерного нагрева.

Далее размыкаются контакты К1, разрывающие номинальный ток (рисунок 2, г). После гашения дуги весь ток проходит уже через другую половину переключающего устройства. Отводящий контакт П1 избирателя при отсутствии тока переходит на ответвление, где уже стоит контакт П2, контакт К2 вновь замыкается и переключение заканчивается.

Из рассмотрения работы переключающего устройства РПН можно сделать следующие выводы:

  • контакты контактора К1 и К2 замыкают и размыкают ток, т.е. подвергаются воздействию электрической дуги;
  • контакты избирателя П1 и П2 замыкаются и размыкаются без разрыва тока, т. е. при отсутствии дуги;
  • привод должен обеспечить описанную последовательность работы контактов;
  • реактор служит для ограничения циркулирующего тока до необходимой величины (например, до половины номинального тока нагрузки);
  • в положениях контактов избирателя «два вместе» и «мост» ток нагрузки распределяется поровну между двумя обмотками реактора, установленными на одном сердечнике. Эти токи направлены навстречу друг другу и в положение «два вместе» не создают возбуждающего поля в сердечнике и падения напряжения.
Читайте так же:
Регулировка карбюратора триммера пиран

Достоинство переключающих устройств с токоограничивающий реактором заключается в возможности длительно работать в промежуточном положении «мост», поэтому для привода этих устройств не требуется специальных быстродействующих механизмов, значит, они могут быть относительно простыми и дешевыми.

В последние годы широкое распространение получили и другие переключающие устройства — с активными токоограничивающими сопротивлениями. Не рассматривая подробно эти устройства, отметим, что их конструкция получается более сложной и дорогой, чем у переключающих устройств с реакторами. Однако они обладают рядом весьма существенных достоинств: громоздкий и тяжелый реактор заменен сравнительно легкими активными сопротивлениями; конструктивно эти устройства более компактны; условия гашения дуги более благоприятны.

Существует много схем регулируемых обмоток трансформаторов. На рисунке 3 показана в качестве примера схема обмотки ВН однофазного трансформатора, регулируемой переключающим устройством с реактором.

Рисунок 3 — Схема обмотки ВН однофазного трансформатора, регулируемой переключающим устройством с реактором

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Импульсные преобразователи цепи постоянного тока

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

Привод РПН

РПН расшифровывается как Регулирование Под Нагрузкой. В приводе расположен электродвигатель и элементы автоматики РПН- пускатели, конечные выключатели, автоматический выключатель, клемник с контрольными кабелями и т.д.

Читайте так же:
Регулировка зажигания на бесконтактном зажигании в яве

Электродвигатель с помощью вала вращает механизм переключения. Вся работа привода РПН контролируется автоматикой РПН.

Именно благодаря применению автоматики не требуется ручное управление- она сама следит за изменениями напряжения и при необходимости меняет коэффициент трансформации, поэтому при любой нагрузке трансформатора на выходе вторичной обмотки- необходимое напряжение.

А у нас в доме- в розетке- 220)))

Автоматикой РПН управляют специальные электронные блоки:

В них выставляются необходимые параметры работы- напряжение, выдержка времени, порог нечувствительности и т.д. В релейной защите это называется уставки.

И электронный блок уже сам определяет когда изменить напряжение, через какое время и в каких пределах, все это делается автоматически.

Так же возможно и ручное переключение РПН- непосредственно из привода около трансформатора или дистанционно- с панели управления из диспетчерского пункта.

Для этого есть специальные переключатели и ключи управления. Оперативный персонал подстанции может отключить автоматику и вручную регулировать напряжение на выходе трансформатора.

Это требуется например когда автоматика РПН выведена в ремонт или при проведении оперативных переключений, но это уже как говорится- совсем другая история)))

Специально по этой теме я снял видео непосредственно с подстанции 110/10 кВ и предлагаю вам “вживую” посмотреть как регулируется напряжение на трансформаторе под нагрузкой!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector